New convergence results on the global GMRES method for diagonalizable matrices
نویسندگان
چکیده
منابع مشابه
New convergence results on the global GMRES method for diagonalizable matrices
In the present paper, we give some new convergence results of the global GMRES method for multiple linear systems. In the case where the coefficient matrix A is diagonalizable, we derive new upper bounds for the Frobenius norm of the residual. We also consider the case of normal matrices and we propose new expressions for the norm of the residual. AMS subject classification: 65F10.
متن کاملTheoretical results on the global GMRES method for solving generalized Sylvester matrix equations
The global generalized minimum residual (Gl-GMRES) method is examined for solving the generalized Sylvester matrix equation [sumlimits_{i = 1}^q {A_i } XB_i = C.] Some new theoretical results are elaborated for the proposed method by employing the Schur complement. These results can be exploited to establish new convergence properties of the Gl-GMRES method for solving genera...
متن کاملConvergence of GMRES for Tridiagonal Toeplitz Matrices
Abstract. We analyze the residuals of GMRES [9], when the method is applied to tridiagonal Toeplitz matrices. We first derive formulas for the residuals as well as their norms when GMRES is applied to scaled Jordan blocks. This problem has been studied previously by Ipsen [5], Eiermann and Ernst [2], but we formulate and prove our results in a different way. We then extend the (lower) bidiagona...
متن کاملtheoretical results on the global gmres method for solving generalized sylvester matrix equations
the global generalized minimum residual (gl-gmres) method is examined for solving the generalized sylvester matrix equation [sumlimits_{i = 1}^q {a_i } xb_i = c.] some new theoretical results are elaborated for the proposed method by employing the schur complement. these results can be exploited to establish new convergence properties of the gl-gmres method for solving genera...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2008
ISSN: 0377-0427
DOI: 10.1016/j.cam.2007.09.016